
PBI CI/CD
From Basic
Automation
to Agentic AI
Joe Rossouw
18 November 2025
Dublin fabric user group

Speaker
•Social work � Epidemiology + Biostatistics �
 Power BI

•Leading awesome team, doing interesting
things

•linkedin.com/in/joe-rossouw

Next project:
•github.com/JoeRossouw/semantic_ops

Why CICD?
• Version control
• Collaboration
• Visibility & oversight
• Quality control

•CICD as enabler:
• Automation

• Deployment
• Quality
• Metadata

• Agentic AI
• Professional growth

Message: you cannot afford to
wait!

What is
CICD

• CI = Continuous Integration
• CD = Continuous

Development/
 Deployment

• Specialized technology (e.g.,
VS Code, GitHub / Azure
DevOps)

• Provides a systematic method
for:

• CI: integrating code to
central repository, and

• CD: deploying solutions
reliably

What is CICD in PBI
• PBI Projects (PBIP): Saves report + model to text files

• Tabular Modal Definition Language (TMDL)
• PBI Report (PBIR)

• VS Code (or other): Code editor - supports automation (e.g.
python / PowerShell) and agentic AI

• Git: Technology that tracks every change + version control.
• Repo: A Git-managed project folder containing all files, code,

and metadata.
• GitHub / Azure DevOps: Platforms that use Git repos. Various

versions of code (branches). Allows for Pull Requests
between branches to merge code. Various branching strategies
possible.

• Deploy (CD): Native PBI git merge or CD Pipelines in Azure
DevOps (or similar)

• Gate: Informs decision to deploy, automated or manual

Basic Setup
• Premium / Fabric Workspace
• Install VS Code
• Install Git
• Create GitHub account + repo (or Azure

DevOps)
• Clone GitHub repo to local folder (accessed

through Code Editor or Explorer)
• Enable GitHub Copilot (free or paid) or Claude,

or Codex ……
• Enable TMDL extension
• Enable PBIP (TMDL + PBIR) and save
• Link your repo with your PBI workspaces
• Deployment pipelines (PBI) optional

Message: using native approach is quick and gives much of the benefit!

Basic Setup

Our Journey
• >40 models, >90 reports, 7 people
• Not native approach – automate

pipeline approach for CI / CD through
Azure DevOps

• 1-month planning, 2-month
development, 1-month migration +
training

• Takes time to learn, things can be a
little new and scary, but at the end
you are at a much better place.

Our Setup
• Two branches + feature branches
• VS Code + Azure DevOps (git)
• Help from Senior Engineer!
• CI pipelines to merge
• CD pipelines to deploy
• Quality Gates (BPA) on deploy
• Documentation + Metadata
• Copilot for GitHub (agentic AI)
• Helper scripts (python / PS)

FUTURE:
Model Context Protocol (MCP) Servers
Custom Graph DB + BPA, metadata & data
edits

Integrating AI into your
workflow
Level 1 – Assistive Use (Chat-Based)
AI tools like ChatGPT used in a browser

Level 2 – Agentic Integration
AI runs inside your environment (e.g., VS Code
with Copilot or local agent). Can edit scripts,
create files, and trigger task, includes some CLI.

Level 3 – Tool Augmentation (MCP / Plugin
Layer)
AI gains structured access to your tools through
the Model Context Protocol
- MS Official MCP’s in development

Level 4 – Systemic Integration (CLI +
Pipelines)
The CLI becomes the automation backbone
connecting components. Pipelines and scripts
can call the CLI, and AI can invoke it to perform
real actions.

Level 5….. Who knows?

Demo
• Create feature branch
• Show repo structure

• TMDL + PBIR structure
• Configs

• Automation
• BPA (show BPA report)
• Auto Fixer

• GitHub Copilot
• Descriptions prompt
• Visualising relationships

• PR to branch + Deploy

